terça-feira, 22 de agosto de 2023

Cercado em Cerâmica

- Ideia de cercado feito com cerâmica.

- As placas foram unidas com parafusos para madeira.



segunda-feira, 21 de agosto de 2023

Código Arduino Para Motores Trifásicos

- Este programa gera uma sequência que pode ser usada para alimentar as 3 fases de um motor trifásico a partir de uma fonte de corrente contínua.

- Implementa os seguintes controles: 

. liga e desliga a marcha;

. sentido de funcionamento;

. frequência; e

. potência (largura de pulso).


const int dirPin = 3;       // Pino de entrada para controlar a direção
const int controlPin = 2;   // Pino para controlar o estado 000
const int outputPins[] = {5, 6, 9}; // Pinos de saída para a sequência desejada
int currentState = 0;
int currentDirection = 1;   // 1 para contar para cima, -1 para contar para baixo

void setup() {
  pinMode(dirPin, INPUT);
  pinMode(controlPin, INPUT);
 
  for (int i = 0; i < 3; i++) {
    pinMode(outputPins[i], OUTPUT);
  }
}

void loop() {
  int controlState = digitalRead(controlPin);
  int direction = digitalRead(dirPin);
 
  int sequence[] = {5, 4, 6, 2, 3, 1}; // Sequência de estados: 101, 100, 110, 010, 011, 001

  if (controlState == LOW) {
    sequence[0] = 0;
    digitalWrite(outputPins[0], LOW);
    digitalWrite(outputPins[1], LOW);
    digitalWrite(outputPins[2], LOW);
    while (digitalRead(controlPin) == LOW) {
      // Aguarda o pino de controle ficar alto para continuar
    }
  }

  if (direction == HIGH) {
    currentDirection = 1;
  } else {
    currentDirection = -1;
  }

  int frequency = map(analogRead(A0), 0, 1023, 0, 300); // Mapeia a leitura analógica para a faixa de frequência
 
  int pulseWidth = map(analogRead(A1), 0, 1023, 0, 255); // Mapeia a leitura analógica para a faixa de largura de pulsos
 
  int delayTime = 1000 / frequency; // Calcula o tempo de atraso com base na frequência
 
  currentState = (currentState + currentDirection + 6) % 6; // Calcula o próximo estado
 
  int currentOutput = sequence[currentState];
 
  digitalWrite(outputPins[0], bitRead(currentOutput, 2));
  digitalWrite(outputPins[1], bitRead(currentOutput, 1));
  digitalWrite(outputPins[2], bitRead(currentOutput, 0));
 
  delayMicroseconds(pulseWidth); // Mantém o pulso ativo de acordo com a largura de pulsos
 
  digitalWrite(outputPins[0], LOW);
  digitalWrite(outputPins[1], LOW);
  digitalWrite(outputPins[2], LOW);
 
  delay(delayTime); // Atraso entre os estados
}
 

sábado, 19 de agosto de 2023

Gerador de Legendas - 7.0

- Esta versão fornece legenda melhor sincronizada à fala.

- A qualidade do reconhecimento da fala está ligada à qualidade do modelo de idioma usado.

import os
import subprocess
import vosk
import pysrt
import json
from flask import Flask, render_template, request
from werkzeug.utils import secure_filename
from moviepy.editor import VideoFileClip

app = Flask(__name__)

UPLOAD_FOLDER = 'uploads'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

def segundos_para_subrip_time(segundos):
    minutos, segundos = divmod(segundos, 60)
    horas, minutos = divmod(minutos, 60)
    return pysrt.SubRipTime(hours=int(horas), minutes=int(minutos), seconds=segundos)

def recognize_speech(file_path, language):
    if language == "en":
        model_path = "vosk-model-small-en-us-0.15"
    elif language == "pt":
        model_path = "vosk-model-small-pt-0.3" #model_path = "vosk-model-pt-fb-v0.1.1-20220516_2113" #Para melhor reconhecimento da fala.
    elif language == "es":
        model_path = "vosk-model-small-es-0.42"
    else:
        raise ValueError("Idioma não suportado.")

    if not os.path.isfile(file_path):
        raise FileNotFoundError("O arquivo de vídeo não existe.")

    sample_rate = 16000
    model = vosk.Model(model_path)
    rec = vosk.KaldiRecognizer(model, sample_rate)
    rec.SetWords(True)
    audio_duration = VideoFileClip(file_path).duration
    ffmpeg_command = f"ffmpeg -y -i {file_path} -vn -acodec pcm_s16le -ar {sample_rate} -ac 1 -f wav -"
    ffmpeg_process = subprocess.Popen(ffmpeg_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

    subtitles = []
    current_subtitle = None
    subtitle_index = 1

    while True:
        audio_data = ffmpeg_process.stdout.read(sample_rate * 2)
        if not audio_data:
            break
        rec.AcceptWaveform(audio_data)
        result = json.loads(rec.Result())

        if "result" in result:
            words = result["result"]
            if not words:
                break

            start_time = words[0]["start"]
            end_time = words[-1]["end"]
            transcript = " ".join([word["word"] for word in words])

            if current_subtitle:
                current_subtitle.text += " " + transcript
                current_subtitle.end = segundos_para_subrip_time(end_time)
            else:
                current_subtitle = pysrt.SubRipItem(
                    index=subtitle_index, start=segundos_para_subrip_time(start_time), end=segundos_para_subrip_time(end_time), text=transcript
                )
                subtitle_index += 1

            # Se a legenda tiver mais de 9 palavras, finalizamos a legenda
            if len(current_subtitle.text.split()) >= 9:
                subtitles.append(current_subtitle)
                current_subtitle = None

        else:
            if current_subtitle:
                subtitles.append(current_subtitle)
                current_subtitle = None

    if current_subtitle:
        subtitles.append(current_subtitle)

    ffmpeg_process.stdout.close()
    ffmpeg_process.wait()

    return subtitles

@app.route("/", methods=["GET", "POST"])
def index():
    if request.method == "POST":
        file = request.files["video_file"]
        language = request.form["language_choice"]

        if file and file.filename.endswith(".mp4"):
            if not os.path.exists(app.config['UPLOAD_FOLDER']):
                os.makedirs(app.config['UPLOAD_FOLDER'])

            file_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
            file.save(file_path)

            try:
                subtitles = recognize_speech(file_path, language)
                output_file = os.path.splitext(file_path)[0]

                if language == "en":
                    output_file += "_ing.srt"
                elif language == "pt":
                    output_file += "_por.srt"
                elif language == "es":
                    output_file += "_esp.srt"

                with open(output_file, "w", encoding="utf-8") as f:
                    for subtitle in subtitles:
                        f.write(str(subtitle))
                        f.write("\n")

                message = f"Processo concluído. Legenda gerada em {output_file}"
            except Exception as e:
                message = f"Erro durante o reconhecimento: {str(e)}"
        else:
            message = "Selecione um arquivo de vídeo no formato .mp4."

        return render_template("index.html", message=message)

    return render_template("index.html")

if __name__ == "__main__":
    app.run(debug=True)
 

domingo, 13 de agosto de 2023

TV como Lâmpada LED

- Uso de uma TV de 50 polegadas como lâmpada LED.



quarta-feira, 9 de agosto de 2023

Motor de Alta Tensão

 - Réplica e modificações.






domingo, 30 de julho de 2023

Gerador de Legendas - 6.0

- A ideia desta versão é gerar o arquivo de legenda no formato .srt a partir de uma interface Web.

- Instale o Flask com o comando:

pip install flask

- Segue o código para criar um aplicativo da web usando Flask:

import os
import subprocess
import vosk
import pysrt
import json
from flask import Flask, render_template, request
from werkzeug.utils import secure_filename
from moviepy.editor import VideoFileClip

app = Flask(__name__)

UPLOAD_FOLDER = 'uploads'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

def recognize_speech(file_path, language, text_widget=None, subtitles=None):
# Configurar o caminho do modelo de idioma Vosk de acordo com a escolha do usuário
if language == "en":
model_path = "vosk-model-small-en-us-0.15"
elif language == "pt":
model_path = "vosk-model-pt-fb-v0.1.1-20220516_2113"
elif language == "es":
model_path = "vosk-model-small-es-0.42"
else:
raise ValueError("Idioma não suportado.")

# Verificar se o arquivo de entrada existe
if not os.path.isfile(file_path):
raise FileNotFoundError("O arquivo de vídeo não existe.")

# Configurar a taxa de amostragem para o modelo Vosk
sample_rate = 16000

# Carregar o modelo de idioma Vosk
model = vosk.Model(model_path)

# Inicializar o reconhecedor de fala Vosk
rec = vosk.KaldiRecognizer(model, sample_rate)
rec.SetWords(True)

# Obter a duração do áudio para atualização da barra de progresso
audio_duration = VideoFileClip(file_path).duration

# Comando FFmpeg para extrair o áudio e converter para WAV
ffmpeg_command = f"ffmpeg -y -i {file_path} -vn -acodec pcm_s16le -ar {sample_rate} -ac 1 -f wav -"
ffmpeg_process = subprocess.Popen(ffmpeg_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

# Realizar o reconhecimento de fala por blocos de áudio
start_time = 0
block_duration = 9 # Definir a duração do bloco em segundos

while start_time < audio_duration:
# Ler o próximo bloco de áudio do processo ffmpeg
audio_data = ffmpeg_process.stdout.read(sample_rate * block_duration)

# Realizar o reconhecimento de fala no bloco atual
rec.AcceptWaveform(audio_data)

# Extrair o texto reconhecido do resultado
result = json.loads(rec.Result())

if "result" in result:
transcript = " ".join([word["word"] for word in result["result"]])
if transcript.strip(): # Verificar se o texto não está vazio
end_time = min(start_time + block_duration, audio_duration)
subtitles.append(pysrt.SubRipItem(index=len(subtitles) + 1, start=pysrt.SubRipTime(seconds=start_time), end=pysrt.SubRipTime(seconds=end_time), text=transcript))

# Atualizar o texto no widget Text (interface do usuário)
if text_widget is not None:
text_widget.insert(tk.END, f"--> {transcript}\n")
text_widget.see(tk.END) # Rolar o texto para mantê-lo visível
text_widget.update() # Atualizar a interface do usuário

# Atualizar o tempo de início para o próximo bloco
start_time += block_duration

# Fechar o processo ffmpeg
ffmpeg_process.stdout.close()
ffmpeg_process.wait()

return subtitles

@app.route("/", methods=["GET", "POST"])
def index():
if request.method == "POST":
file = request.files["video_file"]
language = request.form["language_choice"]

# Verificar se o arquivo foi enviado corretamente
if file and file.filename.endswith(".mp4"):
# Crie o diretório de uploads se ainda não existir
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])

# Salvar o arquivo de vídeo com um nome exclusivo no diretório "uploads"
file_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
file.save(file_path)

try:
subtitles = pysrt.SubRipFile()
recognize_speech(file_path, language, text_widget=None, subtitles=subtitles)
output_file = os.path.splitext(file_path)[0]

if language == "en":
output_file += "_ing.srt"
elif language == "pt":
output_file += "_por.srt"
elif language == "es":
output_file += "_esp.srt"

with open(output_file, "w", encoding="utf-8") as f:
for subtitle in subtitles:
f.write(str(subtitle))
f.write("\n")

message = f"Processo concluído. Legenda gerada em {output_file}"
except Exception as e:
message = f"Erro durante o reconhecimento: {str(e)}"
else:
message = "Selecione um arquivo de vídeo no formato .mp4."

return render_template("index.html", message=message)

return render_template("index.html")

if __name__ == "__main__":
app.run(debug=True)

- Crie um diretório chamado "templates" no mesmo diretório onde se encontra o aplicativo web com o código acima (arquivo Python com extensão .py)  e crie um arquivo chamado "index.html" dentro desse diretório. O conteúdo do arquivo "index.html" será a interface do aplicativo da web. Você pode escrever o HTML, CSS e JavaScript necessários para criar a interface do usuário de acordo com suas preferências e requisitos.

Exemplo básico do arquivo "index.html":

html
<!DOCTYPE html> <html> <head> <title>Gerador de Legendas</title> </head> <body> <h1>Gerador de Legendas</h1> <form action="/" method="post" enctype="multipart/form-data"> <label for="video_file">Escolha o arquivo de vídeo:</label> <input type="file" name="video_file" id="video_file" accept=".mp4"><br> <label>Selecione o idioma para reconhecimento:</label><br> <input type="radio" name="language_choice" value="en" checked> Inglês<br> <input type="radio" name="language_choice" value="pt"> Português<br> <input type="radio" name="language_choice" value="es"> Espanhol<br> <input type="submit" value="Iniciar Reconhecimento"> </form> {% if message %} <p>{{ message }}</p> {% endif %} </body> </html>

- Este é um exemplo simples que mostra a página com um formulário para enviar o arquivo de vídeo e selecionar o idioma para o reconhecimento. O resultado do reconhecimento será exibido como uma mensagem na mesma página após o processamento. Note que este é apenas um exemplo básico, e você pode estilizar e aprimorar a interface do usuário conforme necessário.

- Depois de criar o arquivo "index.html" e o diretório "templates", execute o script Python para iniciar o servidor da web:

python3 seu_script.py

- Acesse o aplicativo em um navegador web acessando http://127.0.0.1:5000/ e utilize-o para reconhecer o áudio do arquivo de vídeo selecionado e gerar as legendas.

- O arquivo de vídeo carregado e o arquivo de legenda no formato .srt gerado são salvos no diretório "uploads". O código do aplicativo web garante que o arquivo seja salvo com um nome exclusivo para evitar conflitos se várias pessoas usarem o aplicativo simultaneamente.

 

sábado, 29 de julho de 2023

Ferramenta Para Comprimir Mola de Espingarda de Pressão

- Ideia para comprimir com segurança a mola de espingardas de pressão.

- É possível (e até melhor) usar sem o cano raiado.

- Sem esta ferramenta é praticamente impossível recolocar o gatilho na posição, pois neste modelo de espingarda o pino que fixa o batente da mola de pressão serve de eixo para o gatilho.


Gerador de Legendas - 5.0

- Nesta versão foi acrescentada uma interface gráfica ao script;

- A parte de tradução das foi retirada;

- O reconhecimento da fala suporta 3 idiomas: Inglês, Português e Espanhol.

import os
import subprocess
import vosk
import pysrt
import json
import sys
import tkinter as tk
from tkinter import filedialog
import threading
from moviepy.editor import VideoFileClip

def recognize_speech(file_path, language, text_widget, subtitles):
    # Configurar o caminho do modelo de idioma Vosk de acordo com a escolha do usuário
    if language == "en":
        model_path = "vosk-model-small-en-us-0.15"
    elif language == "pt":
        model_path = "vosk-model-pt-fb-v0.1.1-20220516_2113"
    elif language == "es":
        model_path = "vosk-model-small-es-0.42"
    else:
        raise ValueError("Idioma não suportado.")

    # Verificar se o arquivo de entrada existe
    if not os.path.isfile(file_path):
        raise FileNotFoundError("O arquivo de vídeo não existe.")

    # Configurar a taxa de amostragem para o modelo Vosk
    sample_rate = 16000

    # Carregar o modelo de idioma Vosk
    model = vosk.Model(model_path)

    # Inicializar o reconhecedor de fala Vosk
    rec = vosk.KaldiRecognizer(model, sample_rate)
    rec.SetWords(True)

    # Obter a duração do áudio para atualização da barra de progresso
    audio_duration = VideoFileClip(file_path).duration

    # Comando FFmpeg para extrair o áudio e converter para WAV
    ffmpeg_command = f"ffmpeg -y -i {file_path} -vn -acodec pcm_s16le -ar {sample_rate} -ac 1 -f wav -"
    ffmpeg_process = subprocess.Popen(ffmpeg_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

    # Realizar o reconhecimento de fala por blocos de áudio
    start_time = 0
    prev_end_time = 0

    while True:
        # Ler o próximo bloco de áudio do processo ffmpeg
        audio_data = ffmpeg_process.stdout.read(sample_rate * 9)
        if len(audio_data) == 0:
            break

        # Realizar o reconhecimento de fala no bloco atual
        rec.AcceptWaveform(audio_data)

        # Extrair o texto reconhecido do resultado
        result = json.loads(rec.Result())

        if "result" in result:
            transcript = " ".join([word["word"] for word in result["result"]])
            if transcript.strip():  # Verificar se o texto não está vazio
                block_duration = result["result"][-1]["end"] - prev_end_time
                progress_percentage = (start_time + block_duration) / audio_duration * 100
                subtitles.append(pysrt.SubRipItem(index=len(subtitles) + 1, start=pysrt.SubRipTime(seconds=start_time), end=pysrt.SubRipTime(seconds=start_time + block_duration), text=transcript))
                
                # Atualizar o texto no widget Text
                text_widget.insert(tk.END, f"--> {transcript}\n")
                text_widget.see(tk.END)  # Rolar o texto para mantê-lo visível

                # Atualizar o tempo de início para o próximo bloco
                start_time += block_duration
                prev_end_time = result["result"][-1]["end"]

    # Fechar o processo ffmpeg
    ffmpeg_process.stdout.close()
    ffmpeg_process.wait()

    return subtitles

class SpeechRecognitionApp(tk.Tk):
    def __init__(self):
        super().__init__()
        self.title("Gerador de Legendas")
        self.geometry("500x500")

        self.file_path = tk.StringVar()
        self.language_choice = tk.StringVar(value="en")

        tk.Label(self, text="Escolha o arquivo de vídeo:").pack(pady=10)
        tk.Button(self, text="Procurar", command=self.browse_file).pack(pady=5)

        tk.Label(self, text="Selecione o idioma para reconhecimento:").pack(pady=10)
        tk.Radiobutton(self, text="Inglês", variable=self.language_choice, value="en").pack(anchor=tk.W)
        tk.Radiobutton(self, text="Português", variable=self.language_choice, value="pt").pack(anchor=tk.W)
        tk.Radiobutton(self, text="Espanhol", variable=self.language_choice, value="es").pack(anchor=tk.W)

        self.display_text = tk.Text(self, wrap="word", width=60, height=10)
        self.display_text.pack(pady=10)

        self.start_recognition_button = tk.Button(self, text="Iniciar Reconhecimento", command=self.start_recognition_process)
        self.start_recognition_button.pack(pady=10)

    def browse_file(self):
        self.file_path.set(filedialog.askopenfilename(filetypes=[("Arquivos de Vídeo", "*.mp4")]))
        file_path = self.file_path.get()
        self.display_text.delete(1.0, tk.END)
        self.display_text.insert(tk.END, f"Arquivo de vídeo: {file_path}")

    def start_recognition_process(self):
        file_path = self.file_path.get()
        language = self.language_choice.get()
        if not file_path:
            self.display_text.delete(1.0, tk.END)
            self.display_text.insert(tk.END, "Selecione um arquivo de vídeo.")
            return

        if not os.path.isfile(file_path):
            self.display_text.delete(1.0, tk.END)
            self.display_text.insert(tk.END, "O arquivo de vídeo não existe.")
            return

        # Limpar o texto reconhecido anterior
        self.display_text.delete(1.0, tk.END)

        # Desabilitar o botão de início para evitar múltiplas execuções
        self.start_recognition_button.config(state=tk.DISABLED)

        # Iniciar o processo de reconhecimento em uma thread separada
        threading.Thread(target=self.perform_recognition, args=(file_path, language)).start()

    def save_subtitles(self, output_file, subtitles):
        # Cria um arquivo .srt com as legendas geradas
        with open(output_file, "w", encoding="utf-8") as f:
            for subtitle in subtitles:
                f.write(str(subtitle))
                f.write('\n')

        self.display_text.delete(1.0, tk.END)
        self.display_text.insert(tk.END, f"Processo concluído. Legenda gerada em {output_file}")

    def perform_recognition(self, file_path, language):
        try:
            subtitles = pysrt.SubRipFile()
            self.display_text.insert(tk.END, "Iniciando o reconhecimento...\n")
            self.update_idletasks()

            blocks = recognize_speech(file_path, language, self.display_text, subtitles)

            # Obter o caminho do arquivo de saída .srt
            output_file = os.path.splitext(file_path)[0]
            if language == "en":
                output_file += "_ing.srt"
            elif language == "pt":
                output_file += "_por.srt"
            elif language == "es":
                output_file += "_esp.srt"

            # Salvar as legendas em formato .srt
            self.save_subtitles(output_file, subtitles)

        except Exception as e:
            self.display_text.insert(tk.END, f"Erro durante o reconhecimento: {str(e)}\n")
            self.update_idletasks()

        finally:
            # Habilitar o botão de início após o término do reconhecimento
            self.start_recognition_button.config(state=tk.NORMAL)

if __name__ == "__main__":
    app = SpeechRecognitionApp()
    app.mainloop()
 

segunda-feira, 24 de julho de 2023

Gerador de Legendas - 4.0

- Nesta versão o arquivo de entrada é recebido como parâmetro do script .py e o arquivo de saída será a legenda traduzida e terá o mesmo nome do arquivo de entrada com a extensão .srt .

import os
import subprocess
import vosk
import pysrt
import json
import sys

if len(sys.argv) != 2:
    print("Uso: python3 nome_do_script.py arquivo_de_entrada.mp4")
    sys.exit(1)

# Caminho do arquivo de vídeo (arquivo de entrada)
video_file = sys.argv[1]

# Verificar se o arquivo de entrada existe
if not os.path.isfile(video_file):
    print("O arquivo de entrada não existe.")
    sys.exit(1)

# Caminho do arquivo de saída (legendas em pt-BR)
output_file = os.path.splitext(video_file)[0] + ".srt"

# Comando FFmpeg para extrair o áudio e converter para WAV
ffmpeg_command = f"ffmpeg -y -i {video_file} -vn -acodec pcm_s16le -ar 16000 -ac 1 -f wav -"
ffmpeg_process = subprocess.Popen(ffmpeg_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

# Carregar o modelo de idioma Vosk
model_path = "vosk-model-small-en-us-0.15"
model = vosk.Model(model_path)
sample_rate = 16000

# Inicializar o reconhecedor de fala Vosk
rec = vosk.KaldiRecognizer(model, sample_rate)
rec.SetWords(True)

# Realizar o reconhecimento de fala por blocos de áudio
subtitles = pysrt.SubRipFile()
start_time = 0
prev_end_time = 0

while True:
    # Ler o próximo bloco de áudio do processo ffmpeg
    audio_data = ffmpeg_process.stdout.read(sample_rate * 2 * 10)
    if len(audio_data) == 0:
        break

    # Realizar o reconhecimento de fala no bloco atual
    rec.AcceptWaveform(audio_data)

    # Extrair o texto reconhecido do resultado
    result = json.loads(rec.Result())

    if "result" in result:
        transcript = " ".join([word["word"] for word in result["result"]])

        if transcript.strip():  # Verificar se o texto não está vazio
            #print(f"{start_time:.2f}s - {transcript}")

            # Traduzir o texto para o português usando o translate-shell
            translation_command = ["trans", "-b", "-no-ansi", "-no-warn", "-no-auto", "-no-bidi", "-s", "en", "-t", "pt-br"]
            translation_process = subprocess.Popen(translation_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)
            translation, _ = translation_process.communicate(input=transcript.strip().encode())
            translation = translation.decode().strip()
            print(f"{start_time:.2f}s - {translation}")

            # Adicionar legenda traduzida ao arquivo de legendas
            block_duration = result["result"][-1]["end"] - prev_end_time
            start_timestamp = pysrt.SubRipTime(seconds=start_time)
            end_timestamp = pysrt.SubRipTime(seconds=start_time + block_duration)
            subtitles.append(pysrt.SubRipItem(index=len(subtitles) + 1, start=start_timestamp, end=end_timestamp, text=translation))

            # Atualizar o tempo de início para o próximo bloco
            start_time += block_duration
            prev_end_time = result["result"][-1]["end"]

# Fechar o processo ffmpeg
ffmpeg_process.stdout.close()
ffmpeg_process.wait()

# Salvar legendas em pt-BR
subtitles.save(output_file, encoding="utf-8")

print("Processo concluído. Legenda em pt-BR gerada em", output_file)


Gerador de Legendas - 3.0

- Nesta versão o tamanho do bloco a ser lido não é mais fixo, depende das pausas existente no áudio. Parece ter gerado melhores legendas.

import os
import subprocess
import vosk
import pysrt
import json

# Caminho do arquivo de vídeo
video_file = "movie.mp4"

# Caminho do arquivo de saída (legendas em pt-BR)
output_file = "traducaoptbrblocovariavel.srt"

# Comando FFmpeg para extrair o áudio e converter para WAV
ffmpeg_command = f"ffmpeg -y -i {video_file} -vn -acodec pcm_s16le -ar 16000 -ac 1 -f wav -"
ffmpeg_process = subprocess.Popen(ffmpeg_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

# Carregar o modelo de idioma Vosk
model_path = "vosk-model-small-en-us-0.15"
model = vosk.Model(model_path)
sample_rate = 16000

# Inicializar o reconhecedor de fala Vosk
rec = vosk.KaldiRecognizer(model, sample_rate)
rec.SetWords(True)

# Realizar o reconhecimento de fala por blocos de áudio
subtitles = pysrt.SubRipFile()
start_time = 0
prev_end_time = 0

while True:
    # Ler o próximo bloco de áudio do processo ffmpeg
    audio_data = ffmpeg_process.stdout.read(sample_rate * 2 * 10)
    if len(audio_data) == 0:
        break

    # Realizar o reconhecimento de fala no bloco atual
    rec.AcceptWaveform(audio_data)

    # Extrair o texto reconhecido do resultado
    result = json.loads(rec.Result())

    if "result" in result:
        transcript = " ".join([word["word"] for word in result["result"]])

        if transcript.strip():  # Verificar se o texto não está vazio
            print(f"{start_time:.2f}s - {transcript}")

            # Traduzir o texto para o português usando o translate-shell
            translation_command = ["trans", "-b", "-no-ansi", "-no-warn", "-no-auto", "-no-bidi", "-s", "en", "-t", "pt-br"]
            translation_process = subprocess.Popen(translation_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)
            translation, _ = translation_process.communicate(input=transcript.strip().encode())
            translation = translation.decode().strip()
            print(f"{start_time:.2f}s - {translation}")

            # Adicionar legenda traduzida ao arquivo de legendas
            block_duration = result["result"][-1]["end"] - prev_end_time
            start_timestamp = pysrt.SubRipTime(seconds=start_time)
            end_timestamp = pysrt.SubRipTime(seconds=start_time + block_duration)
            subtitles.append(pysrt.SubRipItem(index=len(subtitles) + 1, start=start_timestamp, end=end_timestamp, text=translation))

            # Atualizar o tempo de início para o próximo bloco
            start_time += block_duration
            prev_end_time = result["result"][-1]["end"]

# Fechar o processo ffmpeg
ffmpeg_process.stdout.close()
ffmpeg_process.wait()

# Salvar legendas em pt-BR
subtitles.save(output_file, encoding="utf-8")

print("Processo concluído. Legenda em pt-BR gerada em", output_file)